חAmIBIA UחIVERSITY
 OF SCIEПCE AחD TECHחOLOGY
 FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE CODE: ICH602S	COURSE NAME: INORGANIC CHEMISTRY
SESSION: NOVEMBER 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	DR. EUODIA HESS
MODERATOR:	PROF HABAUKA KWAAMBWA

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly
4. All written work must be done in blue or black ink and sketches can be done in pencil
5. No books, notes and other additional aids are allowed

PERMISSABLE MATERIALS
Non-programmable calculators

ATTACHMENTS

1. List of useful constants
2. Periodic Table

THIS QUESTION PAPER CONSISTS OF 8 PAGES
(Including this front page, list of constants and periodic table)

QUESTION 1: Multiple Choice Questions

- There are 20 multiple choice questions in this section. Each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.

1. Which of the following ranks regions of the electromagnetic spectrum in proper order from highest to lowest frequency.
A. radio $>x$-rays $>$ gamma rays $>$ visible $>$ microwaves
B. gamma rays $>x$-rays $>$ visible $>$ microwaves $>$ radio
C. microwaves $>$ gamma rays $>x$-rays $>$ visible $>$ radio
D. x-rays $>$ gamma rays $>$ microwaves $>$ visible $>$ radio
2. Which of the following regions of the electromagnetic spectrum has the lowest frequency?
A. x-ray
B. gamma ray
C. ultraviolet
D. infrared
3. A device emits light at 244.4 nm . What is the frequency of this radiation?
A. $1.23 \times 10^{15} \mathrm{~Hz}$
B. $8.14 \times 10^{-37} \mathrm{~Hz}$
C. $8.14 \times 10^{-19} \mathrm{~Hz}$
D. $3.69 \times 10^{26} \mathrm{~Hz}$
4. What is the wavelength of a photon that has an energy of $3.097 \times 10^{4} \mathrm{~J}$?
A. $3.1 \times 10^{13} \mathrm{~nm}$
B. $6.42 \times 10^{-21} \mathrm{~nm}$
C. $9.29 \times 10^{21} \mathrm{~nm}$
D. $6.16 \times 10^{12} \mathrm{~nm}$
5. What is the wavelength of light emitted when the electron in a hydrogen atom undergoes a transition from level $n=8$ to level $n=2$?
A. $1.7 \times 10^{-27} \mathrm{~kJ} / \mathrm{mol}$
B. $2.57 \times 10^{6} \mathrm{~kJ} / \mathrm{mol}$
C. $5.11 \times 10^{-19} \mathrm{~kJ} / \mathrm{mol}$
D. $3.89 \times 10^{-7} \mathrm{~kJ} / \mathrm{mol}$
6. What is the hybridization of the central atom in a molecule with a tetrahedral molecular geometry?
A. $s p^{2}$
B. $s p$
C. $s p^{3}$
D. $s p^{3} \mathrm{~d}$
7. What is the hybridization of each carbon atom in benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$?
A. $s p$
B. $s p^{2}$
C. $s p^{3}$
D. $s p^{4}$
8. For which of the following molecules does the carbon atom have $s p^{3}$ hybridization?
A. $\mathrm{Cl}_{2} \mathrm{CO}$
B. CO
C. CS_{2}
D. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
9. What is the molecular geometry around a central atom that is $s p^{2}$ hybridized, has three sigma bonds, and one pi bond?
A. trigonal-planar
B. trigonal-pyramidal
C. square planar
D. T-shaped
10. Which of the following concerning σ and π bonds is/are correct?
A. Pi bonds are formed from unhybridized p orbitals
B. Both A and D
C. Sigma bonds may only be formed from unhybridized orbitals Pi bonds are formed from unhybridized p orbitals
D. A pi bond has an electron distribution above and below the bond axis
11. A molecular orbital that decreases the electron density between two nuclei is said to be \qquad .
A. Hybridized
B. Bonding
C. pi-bonding
D. antibonding
12. The following valence molecular orbital energy level diagram is appropriate for which one of the listed species?

A. F_{2}^{2+}
B. C_{2}^{2+}
C. $B r_{2}^{2+}$
D. N_{2}^{2+}
13. Which molecule will have the following valence molecular orbital energy level diagram?

A. B_{2}
B. Be_{2}
C. N_{2}
D. O_{2}
14. Which molecule will have the following valence molecular orbital level energy diagram?

A. N_{2}
B. C_{2}
C. O_{2}
D. B_{2}
15. Which of the following correctly describes the states of matter and intermolecular forces?
A. The change in volume that accompanies the conversion of a liquid to a gas can be very large.
B. The change in volume that accompanies the conversion of a liquid to a solid is small.
C. The forces of attraction between molecules in the liquid and solid state correlate with melting point, boiling point, and the energy of phase changes.
D. All of the above
16. Which one of the following molecules will exhibit dipole-dipole intermolecular forces as a pure liquid or solid?
A. CS_{2}
B. $\mathrm{C}_{2} \mathrm{H}_{2}$
C. SiCl_{4}
D. NH_{3}
17. Which of the following bonds can potentially contribute to the formation of a hydrogen bond in a solid or liquid?
A. Ge-H
B. $\mathrm{Si}-\mathrm{H}$
C. $\mathrm{I}-\mathrm{H}$
D. $\mathrm{N}-\mathrm{H}$
18. Hydrogen bonding is present in all of the following molecular solids EXCEPT \qquad .
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$
B. $\mathrm{CH}_{3} \mathrm{OH}$
C. HF
D. $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
19. As pure molecular solids, which of the following exhibit only induced dipole/induced dipole forces: $\mathrm{CO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and SO_{2} ?
A. CO_{2} only
B. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ only
C. CO_{2} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
D. SO_{2} only
20. What intermolecular force or bond is primarily responsible for the solubility of carbon monoxide (CO) in water?
A. dipole/induced dipole force
B. dipole-dipole force
C. hydrogen bonding
D. ion-induced dipole force

SECTION B:

There are THREE questions in this section. Answer all questions. Show clearly, where necessary, how you arrive at the answer as all working will carry marks.

Question 1

1.1 Name the species and give the valence electron counts to the metal atoms in:
a) $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
b) $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right.$
c) $\left[\mathrm{V}(\mathrm{CO})_{6}\right]$
d) $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
e) $\left.\mathrm{Rh}(\mathrm{Me})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right]$
1.2 What hapticities are possible for the interaction of each of the following ligands with a single d-block metal atom such as cobalt?
a) $\mathrm{C}_{2} \mathrm{H}_{4}$
b) cyclopentadienyl
c) $\mathrm{C}_{6} \mathrm{H}_{6}$
d) cyclooctadiene
e) cyclooctatetraene
1.3 Give the electron count of:
a) $\left[\mathrm{Ni}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2}\right]$
b) $\left[\mathrm{Co}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]$

Question 2

2.1 Decide which type of intermolecular forces is involved in:
a) O_{2}
b) $\mathrm{CH}_{3} \mathrm{OH}$
c) N_{2} in $\mathrm{H}_{2} \mathrm{O}$
2.2 The molar enthalpy of vaporization of methanol is $35.2 \mathrm{~kJ} / \mathrm{mol}$ at $64.6^{\circ} \mathrm{C}$. How much energy Is required to evaporate 1.00 kg of methanol at $64.6^{\circ} \mathrm{C}$?
2.3 Gold has a face centered unit cell and it's density is $19.32 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate the radius of gold atom.
2.4 Iron has a density of $7.8740 \mathrm{~g} / \mathrm{cm}^{3}$ and the radius of an iron atom is 126 pm . Verify that solid iron has a body-centered cubic unit cell.
2.5 A soft waxy solid melts over a temperature range from $120^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$. It doesn't dissolve in water and does not conduct electricity. These properties are consistent with its identity as a \qquad solid.

Question 3

Define Hard and Soft acids and bases (HSAB) theory. How would you characterize hard acids and bases?

THE END

GOODLUCK

USEFUL CONSTANTS:

Gas constant, $\mathrm{R}=8.3145 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}=0.083145 \mathrm{dm}^{3} \cdot \mathrm{bar} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}=0.08206 \mathrm{Latm} \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$ $1 \mathrm{~Pa} \cdot \mathrm{~m}^{3}=1 \mathrm{kPa} . \mathrm{L}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~J}$
$1 \mathrm{~atm}=101325 \mathrm{~Pa}=760 \mathrm{mmHg}=760$ torr
Avogadro's Number, $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Planck's constant, $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$
Rydberg constant, $R_{h}=2.18 \times 10^{-18} \mathrm{~J}$
Speed of light, $\mathrm{c}=2.998 \times 10^{8} \mathrm{~ms}^{-1}$

PERIODIC TABLE OF THE ELEMENTS

1																	18
$\mathbf{1}$ \mathbf{H} 1.00794	2											13	14	15	16	17	$\begin{gathered} 2 \\ \mathrm{He} \\ 4.00260 \end{gathered}$
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.01218											10.81	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.9898	24.305	3	4	5	6	7	8	9	10	11	12	26.9815	28.0855	30.9738	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	$\mathbf{Z n}$	Ga	Ge	As	Se	Br	$\mathbf{K r}$
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	$\mathbf{Z r}$	Nb	Mo	Tc	Ru	$\mathbf{R h}$	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	87.62	88.9059	91.22	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.41	114.82	118.69	121.75	127.6	126.9	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.905	137.33	174.967	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.908	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112		114		116		118
${ }_{\text {Fr }}$	Ra	Lr	Rf	Db	Sg	Bh	$\mathrm{Hs}^{\text {che }}$	Mt	Uun (269)	Uuu (272)	Uub (269)		Uuq		Uuh		Uuo
(223)	226.025	(260)	(261)	(262)	(263)	(264)	(265)	(268)									

Lanthanides:	57 La 138.906	$\begin{gathered} 58 \\ \mathrm{Ce} \\ 140.12 \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline 60 \\ \mathbf{N d} \\ 144.24 \\ \hline \end{array}$	$\begin{gathered} 61 \\ \mathbf{P m} \\ (145) \\ \hline \end{gathered}$	$\begin{gathered} 62 \\ \text { Sm } \\ 150.36 \\ \hline \end{gathered}$	$\begin{gathered} 63 \\ \mathbf{E u} \\ 151.96 \end{gathered}$	$\begin{gathered} 64 \\ \mathbf{G d} \\ 157.25 \end{gathered}$	65 Tb 158.925	$\begin{array}{\|c\|} \hline 66 \\ \mathbf{D y} \\ 162.50 \\ \hline \end{array}$	67 $\mathbf{H o}$ 161.930	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.26 \\ \hline \end{gathered}$	69 Tm 166.934	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.04 \end{gathered}$
Actinides:	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	$\begin{gathered} \text { Ac } \\ 227.028 \end{gathered}$	$\underset{232.038}{\mathbf{T h}}$	$\begin{gathered} \mathbf{P a} \\ 231.036 \\ \hline \end{gathered}$	$\left\|\begin{array}{c} \mathbf{U} \\ 238.029 \end{array}\right\|$	$\underset{237.048}{\mathbf{N p}}$	$\underset{(244)}{\mathbf{P u}}$	$\begin{aligned} & \text { Am } \\ & (243) \end{aligned}$	Cm (247)	Bk (247)	$\underset{(251)}{\mathbf{C f}}$	$\underset{(252)}{\text { Es }}$	Fm (257)	Md (258)	No (259)

